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Abstract—In this work we present a new construction method
of IVFSs from Fuzzy Sets. We use these IVFSs for image
processing. Concretely, in this contribution we introduce a new
image magnification algorithm using IVFSs. This algorithm is
based on block expansion and it is characterized by its simplicity.

Index Terms—Interval-Valued Fuzzy Sets, Image Processing,
Image Magnification

I. INTRODUCTION

In image processing problems we start from an image,

that can be naturally interpreted as a Fuzzy Set. However,

it has been proven that the use of Interval-valued Fuzzy Sets

(IVFSs) in this kind of problems can provide some information

about the neighbourhood of each pixel [5]. This is why in the

specialized literature we can find numerous applications of

IVFSs in image processing, to solve problems like filtering

[2], edge detection [4] or segmentation [9], [17], [7].

To associate an IVFS with an image, in this work we present

a new construction method of IVFSs from Fuzzy Sets, so every

pixel in the image has an interval membership degree to the

set. We interpret the length of each pixel’s membership to

the IVFS as a measure of the variation of intensities in the

neighbourhood of that pixel. This is why the length of each

interval is fixed beforehand.

Once the image is represented by an IVFS, we can apply

any interval-valued method to it. In this work we focus on

image scaling problem. There are two fundamental kinds of

scaling: magnification, where the dimension of the image is

enlarged [12], [15], [18], and reduction, that diminishes it

[10]. In this contribution we work on image magnification,

also called enlargement.

Image scaling is used in many applications. For instance,

to upload images to a web page or to show images in

devices such as screens, PDAs or mobile phones. Some of

these devices have very limited memory. In these cases it is

necessary to use simple image magnification algorithms.

There exist several techniques for image magnification [13].

Some of them are only based on one image, while others

use several images in the magnification process. The most

frequently used methods working with a single image are

based on interpolation [1]. Common algorithms, such as nea-

rest neighbour or bilinear interpolation, are computationally

simple, but suffer from smudge problems, especially in the

areas containing edges. Nevertheless, linear approximations

are the most used ones since, even if they provide results

worse than those obtained with cubic interpolation or spli-

nes, the computational cost of the latter is larger. Methods

working with several images are also very common in video

applications, to magnify a video sequence [16], [14]. Sets of

images are also used to enlarge individual images in learning

frameworks [8], [11].

We present a different approach for image magnification,

based only on one image, constructed by blocks. In this sense,

each area or block in the new image is obtained by a weighted

aggregation of the intensities of a pixel and its neighbours in

the original image.

This work is organized as follows: first, in Section II we

recall some preliminary definitions. In Section III, we show

the construction method of IVFSs. In Section IV, we describe

in detail the image magnification algorithm. We finish the work

with some experimental results in Section V and conclusions

in Section VI.

II. PRELIMINARIES

Let us denote by L([0, 1]) the set of all closed subintervals
in [0, 1], that is,

L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 and x ≤ x}.

L([0, 1]) is a lattice with respect to the relation ≤L, which is

defined in the following way. Given x,y ∈ L([0, 1]),

x ≤L y if and only if x ≤ y and x ≤ y.

The relation above is transitive, antisymmetric and it expresses

the fact that x strongly links to y, so that (L([0, 1]),≤L) is

a complete lattice, where the smallest element is 0L = [0, 0],
and the largest is 1L = [1, 1].
Definition 1: An interval-valued fuzzy set A on the universe

U 6= ∅ is a mapping A : U → L([0, 1]).

978-1-61284-076-5/11/$26.00 ©2011 IEEE 16



We denote by IV FSs(U) the set of all IVFSs on U .

Similarly, FSs(U) is the set of all fuzzy sets on U .

From now on, we denote by W ([x, x]) the length of the

interval [x, x]; that is, W ([x, x]) = x− x.

Definition 2: Let α ∈ [0, 1]. The operator Kα : L([0, 1]) →
[0, 1] is defined as a convex combination of the bounds of its

argument, i.e.

Kα(x) = x + α(x− x)

for all x ∈ L([0, 1]).
Clearly, the following properties hold:

1) K0(x) = x for all x ∈ L([0, 1]),
2) K1(x) = x for all x ∈ L([0, 1]),
3) Kα(x) = Kα([K0(x),K1(x)]) = K0(x) + α(K1(x) −

K0(x)) for all x ∈ L([0, 1]).

Let A ∈ IV FSs(U) and α ∈ [0, 1]. Then, we denote by

Kα(A) the fuzzy set

Kα(A) = {ui,Kα(A(ui))|ui ∈ U}.

Proposition 1: For all α, β ∈ [0, 1] and A,B ∈
IV FSs(U), it is verified that

(a) If α ≤ β, then Kα(A) ≤ Kβ(A).
(b) If A ≤L B then Kα(A) ≤ Kα(B).

where ≤ is Zadeh’s order relation.

III. CONSTRUCTION OF INTERVAL-VALUED FUZZY SETS

OF FIXED LENGTH

In this section we propose a construction method of ele-

ments in L([0, 1]) such that their length is fixed beforehand.

As we have already mentioned, this fact is very important

because we want to represent the variation of the intensities

around each pixel by the length of the interval. Besides, this

variation is adjusted by δ, a scaling factor.

Proposition 2: The mapping F : [0, 1]2× [0, 1] → L([0, 1])
given by

F (x, y, δ) = [F (x, y, δ), F (x, y, δ)]

where

F (x, y, δ) = x(1− δy)

F (x, y, δ) = x(1− δy) + δy

satisfies that:

1) F (x, y, δ) ≤ x ≤ F (x, y, δ) for all x ∈ [0, 1];
2) F (x, 0, δ) = [x, x];
3) F (0, y, δ) = [0, δy];
4) F (x, y, 0) = [x, x];
5) W (F (x, y, δ)) = δy.

6) If y1 ≤ y2 then W (F (x, y1, δ)) ≤ W (F (x, y2, δ)) for

all x, δ ∈ [0, 1];

Theorem 1: Let AF ∈ FSs(U) and let ω, δ : U → [0, 1]
be two mappings. Then

A = {(ui, A(ui) = F (µAF
(ui), ω(ui), δ(ui)))|ui ∈ U}

is an Interval-Valued Fuzzy Set.

Corollary 1: In the setting of Theorem 1, if for every ui ∈
U we take δ(ui) = 1 then

ω(ui) = W (F (µAF
(ui), ω(ui), 1)).

Notice that under the conditions of Corollary 1 the set A is

given as follows:

A = {(ui,µAF
(ui)(1− ω(ui)),

µAF
(ui)(1− ω(ui)) + ω(ui))|ui ∈ U}

Example 1: Let U = {u1, u2, u3, u4} and let AF ∈
FSs(U) given by

AF = {(u1, 0.3), (u2, 1), (u3, 0.5), (u4, 0.8)}

and ω(ui) = 0.3, δ(ui) = 1 for all ui ∈ U . By Corollary 1

we obtain the following Interval-Valued Fuzzy Set:

A = {(u1, [0.21, 0.51]), (u2, [0.7, 1.00]),

(u3, [0.35, 0.65]), (u4, [0.56, 0.86])}

IV. IMAGE MAGNIFICATION ALGORITHM

In this section we propose a gray-scale image magnification

algorithm that uses IVFSs and the Kα operators.

In this work, we consider an image Q of N × M pixels

as a set of N ×M elements arranged in rows and columns.

Therefore, we consider an image as a N × M matrix. We

denote by qij the intensity of the pixel at the position (i, j) of
the Q matrix, with i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}. In this

contribution we work with gray-scale images whose intensities

take values in the interval [0,255]. We normalize them in order

to have values in [0, 1].
The purpose of our algorithm is, given an image Q of

dimension N×M , to magnify it 2n+1 times; that is, to build

a new image of dimension N ′×M ′ with N ′ = (2n+1)×N ,

M ′ = (2n + 1) ×M , n ∈ N − {0} with 2n + 1 ≤ N and

2n + 1 ≤M .

The algorithm consists of the following steps:

1. Take δ ∈ [0, 1].
2. FOR each pixel in position (i, j) DO

2.1. Fix a grid V of dimension (2n + 1) × (2n + 1)
centered at (i, j).

2.2. Calculate W as the difference between the largest

and the smallest intensities of the pixels in V .

2.3. Build the interval F (qij ,W, δ).
2.4. Build a block V ′ equal to V .

2.5. FOR each element (k, l) of V ′ DO

qkl = Kqkl
(F (qij ,W, δ)).

ENDFOR

ENDFOR

Algorithm 1

We explain the steps of Algorithm 1 through an intuitive

example. Given the image in Figure 1 of dimension 5 × 5,
we want to build a magnified image of dimension 15 × 15
(n = 1).
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Fig. 1. Example: original image

Step 1. Take δ ∈ [0,1]. In the example we take δ = 1.
Step 2.1. Fix a grid V of dimension (2n + 1)× (2n + 1)

centered at each pixel. This grid represents the neighbour-

hood that is used in the magnification of each pixel from the

image. The intensities of the pixels in this grid provide the

information to get the length of the membership interval built

through F . In the example, for pixel (2, 3) (marked in dark

gray in Figure 2), we fix a grid of dimension 3× 3 around it

(in light gray).

Fig. 2. Example: Grid V in original image

Remark. For pixels in the first or the last row/column, we

choose a grid centered at them as shown in Figure 3.

Fig. 3. Example: grid for pixels in the first or last row/column. (a) Pixel in
the first column, (b) Pixel in the last column, (c) Pixel in the first row, (d)
Pixel in the last row.

Step 2.2. Calculate W as the difference between the

largest and the smallest of the intensities of the pixels in

V. For pixel (2, 3) we calculate W as:

W =max(0.6, 0.65, 0.4, 0.59, 0.6, 0.5, 0.7, 0.6, 0.52)−

min(0.6, 0.65, 0.4, 0.59, 0.6, 0.5, 0.7, 0.6, 0.52) =

= 0.7− 0.4 = 0.3

Step 2.3. Build the interval F(qij,W, δ). We associate to

each pixel an interval of length δ ·W following the method

explained in Section III:

F (qij ,W, δ) = [qij(1− δ ·W ), qij(1− δ ·W ) + δ ·W ].

In the example, the interval associated to pixel (2, 3) is given
by:

F (0.6, 0.3, 1) = [0.6(1−0.3), 0.6(1−0.3)+0.3] = [0.42, 0.72].

Step 2.4. Build a block V′ equal to V. This new block is

shown in Figure 4.

Fig. 4. Copied V ′ block for pixel (2, 3).

Step 2.5. CalculateKqkl
(F(qij,W, δ)) for each pixel.We

are going to expand each pixel (i, j) in image Q over the new

block V ′. In the example, the block V ′ associated to pixel

(2, 3) is expanded as shown in Figure 5.

Fig. 5. Expanded block for pixel q23

In this step, we are going to use the result of Proposition 3.

Proposition 3: In the settings of Proposition 1, if we take

α = x, then

Kx(F (x, y, δ)) = x

for all x, y, δ ∈ [0, 1].
Proof. Kx(F (x, y, δ)) = Kx([x(1− δy), x(1− δy) + δy]) =
x(1− δy) + x ·W (F (x, y · δ)).
From condition 5) in Proposition 2

Kx(F (x, y, δ)) = x(1− δy) + xδy = x �

To keep the value of the original pixel at the center of the

new block, Proposition 3 states that α should be equal to the

intensity of that pixel. In the case of pixel (2, 3) we have

0.6 = q′
22

= Kq23
([0.42, 0.72]) = 0.42 + q230.3 = 0.6.
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We extend this method to fill in the remaining pixels in

the block. In this way, from Proposition 3 we take α as the

intensity of each pixel in the original block V ′ :

• α = q12. Then

q′
11

= 0.42 + q120.3 = 0.42 + 0.6 · 0.3 = 0.6
• α = q13. Then

q′
12

= 0.42 + q130.3 = 0.42 + 0.65 · 0.3 = 0.615
• α = q14. Then

q′
13

= 0.42 + q140.3 = 0.42 + 0.4 · 0.3 = 0.54
• · · ·
• α = q34. Then

q′
33

= 0.42 + q340.3 = 0.42 + 0.52 · 0.3 = 0.576

In Figure 6 we show the expanded block for pixel (2, 3) in
the example.

Fig. 6. Expanded block for pixel q23

Once each of the pixels has been expanded, we join all the

blocks to create the magnified image, as shown in Figure 7.

Fig. 7. Magnified image

V. EXPERIMENTAL RESULTS

In this section we apply our approach in four images and

we study the results. We follow these steps (see Figure 8):

1. We start from images of 255× 255 and we reduce them

to a 85× 85 size using the reduction algorithm proposed

in [6].

2. Next, with Algorithm 1, we magnify the images to a

255× 255 size.

3. Finally, we compare the images that we obtain with the

original ones.

In order to compare the images we use the measures

developed in [3]. Concretely, we use the expression

S(Q,Q′) =
1

N ×M

N∑

i=1

M∑

j=1

1− |qij − q′ij | (1)

TABLE I
COMPARISON OF THE RECONSTRUCTED IMAGES WITH THE ORIGINAL ONE

δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1
Ship 0.9596 0.9605 0.9610 0.9609 0.9606
Church 0.9718 0.9730 0.9732 0.9730 0.9723
Cows 0.9324 0.9335 0.9341 0.9342 0.9338
Car 0.9506 0.9511 0.9513 0.9512 0.9508

where Q,Q′ are two images of dimension N ×M .

Fig. 8. Schema to check the algorithm

Figure 9 depicts the original images (first column) and their

reductions (second column).

A. Initial Study of the Values of δ

In this experiment we are going to study the effect of the

parameter δ in Algorithm 1. To do so, we start executing it over

the previous images with values δ = {0, 0.25, 0.5, 0.75, 1}.
When δ = 0, we know by Proposition 2 that

F (x, y, 0) = [x, x]

for all x, y ∈ [0, 1], and we aslo know that

Kα([x, x]) = x

for all α ∈ [0, 1]. In this way, when we apply the magnification
method taking δ = 0 we build blocks in which all the elements
take the value of the central pixel (see Figure 10).

In this sense, when δ = 0 we lose information from the

neighbourhood, that is, the reconstructed blocks do not keep

the same relation than the original pixel with the surrounding

ones. The application of this value for the parameter δ leads

to poor solutions, as we can see in Figure 10.

Next, we analyze the remaining cases: δ = 0.25, δ = 0.5,
δ = 0.75 and δ = 1. In Figure 11 we show all the test images

magnifications for the chosen values of δ.

We must point out that when δ increases, the length of the

interval associated with each pixel increases too. In this way,

it also increases the range in which the intensities of pixels in

each reconstructed block vary. Observe that if we take δ = 1
the quality of areas around edges diminishes.

To compare the obtained images with the original one we

use the comparison index given in Equation 1. In Table I

we show the results. We observe that the best solutions are

obtained when we take intermediate values of δ, that is, values

of δ close to 0.5.
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δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

Fig. 11. Reconstructed images with different values of the parameter δ

B. Further Study of the Values of δ

Next we carry on a deeper analysis of our study. Up to

now, we have worked with 5 values of δ uniformly distributed

between 0 and 1. Now, we refine our study working with 100
values of δ uniformly distributed between 0 and 1. In Figures
12, 13, 14 and 15 we show the accuracy of our solutions. In

the abscissa axis we show the values of parameter δ, while

in the ordinate axis we show the similarities between the

reconstructed images and the original ones.

From the resulting graphs we observe that the best results

are obtained for δ = 0.59 for Ship image, δ = 0.49 for Church
image, δ = 0.66 for Cows image and δ = 0.55 for Car image.

We also observe that reconstructions loose quality as δ tends

to zero or one, as it has been experimentally shown previously.

VI. CONCLUSION

In this work we have introduced a new construction method

of IVFSs starting from fuzzy sets. The importance of this

construction is that the length of the constructed interval is

fixed a priori. It is used in the application we have presented,

where represents the variation of intensities around each pixel.

This application uses the construction method to develop a

new image magnification algorithm. Instead of most of the

published methods, this algorithm is not based on interpola-

tion. In this way, a new block is constructed for every pixel
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Image Ship

Image Church

Image Cows

Image Car

Fig. 9. Original images and reductions

of the image, and the central pixel of that block maintains the

intensity of the original pixel. To fill in the rest of the pixels,

we have used the relation between the pixel in the original

image and its neighbours. The parametrization used in the

algorithm allows to adapt it in order to look for the optimal

set-up for each image. We have also studied this parameter,

concluding that the best value is always far away from the

bounds of its domain (0 and 1). Moreover, we must stress

the simplicity of this approach with respect to other methods

Fig. 10. Images built with δ = 0

published in the specialized literature.
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